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Abstrack 
In this paper, the problem of axial shear of a hollow circular cylinder, composed of an elastic, homogeneous, 
isotropic material, is described. The inner surface of the tube is bonded to a rigid cylinder while the outer surface 
is subjected to axial shear. From some examples of energy functions, conditions on shear are set. These 
conditions are finally generalized for a certain class of potentials. 
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1. Introduction 
The study of shearing of elastic materials, 
incompressible has always been the subject 
of special attention in mechanics [1]. In 
fracture mechanics, for example, antiplan 
shear has been of particular interest. 
Simple shear deformations, for which the 
displacement gradient is constant, are 
sustainable both in the linear and nonlinear 
theory. Necessary and sufficient conditions 
on the strain energies for homogeneous 
isotropic nonlinear elastic materials which 
do allow antiplane shear were obtained in 
Knowles for further contributions in the 
compressible case [2]. 
This is the case for example of the study on 
the propagation of a crack. In brittle 
fracture mechanics, the solution of the 
antiplan problem allows to know the crack 
front response. For analytical solutions in 
antiplan mode (or mode III in fracture 
mechanics), with boundary conditions 
equivalent to those of a linear elasticity 
problem, we have either regular fields or 
strong discontinuity lines of the gradient of 
the shifting. For the antiplanar shear, some 
authors [3] had to precede to a 
classification of the materials likely to 
undergo such a deformation. Other authors 
[4] have shown that this characterization of 
materials is closely related to the nature 
and form of the energy function. This 
characterization remains less obvious in 
nonlinear elasticity. In the case of 

telescopic shear where radial deformation 
is neglected, only incompressible materials 
are considered [5], and the study of 
boundary problems leads to analytical 
solutions. The intent of this expository 
paper is to draw the attention of the applied 
mathematics to an interesting two-
dimensional mathematical model arising in 
solid mechanics involving a single second-
order nonlinear partial differential 
equation. Anti-plane shear deformations 
are one of the simplest classes of 
deformations that solids can undergo. In 
longitudinal shear of cylindrical body, the 
displacement is parallel to the generators 
of the cylinder and is independent of the 
axial coordinate. Generalized shear, with 
just a single scalar axial displacement field, 
may be viewed as complementary to the 
more complicated plane strain 
deformation, with its two in-plane 
displacements. 
In this paper, after the formulation of the 
problem, we are interested in the necessary 
conditions for a material to undergo an 
axial shear on the one hand, and on the 
other, for the case of a certain class of 
materials whose shearing conditions 
depend on strongly of the nature of the 
energy density. We will end up with a 
more general formulation. 
 
 
 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 9, Issue 3, March-2018                                                             667 
ISSN 2229-5518  

IJSER © 2018 
http://www.ijser.org 

2. Basic equations 
The geometric domain is a hollow cylinder 
composed of an elastic, isotropic material 
with an inner surface bounded by a rigid 
cylinder and an outer surface subjected to 
axial shear. 
In a cylindrical coordinate system, 
consider a point 𝑀 which, in the 
undistorted configuration has the 
components ),,( ZR Θ  and the deformed 
configuration ).,,( zr θ  
The kinematics of deformation is described 
by: 
 

 (2.1) 
 

which translates for axial shear, a 
combined deformation of the tube: radial 
with )(Rr  and longitudinal or shear anti 
plan with ).(Rw  
With clearly defined boundary conditions 
on the inner iR  and outer eR  radius [5], 
these two functions are solutions of a 
system of nonlinear differential equations. 
The resolution of these equations strongly 
depends on the shape of the energy 
function  where the first three 
invariants of the Cauchy Green tensor are

)3,2,1(, =iIi . 
According to (2.1), the deformation 
gradient tensor and the left Cauchy-Green 
tensor are written: 
 

  (2.2) 
The first three elementary invariants of  
give: 
 

 (2.3) 

where𝐵∗ = (𝑑𝑒𝑡𝐵)𝐵−1is the adjoint of  
The stress tensor of Cauchy is given by 
[6], 
  (2.4) 
where is the identity tensor and 

are given by: 
 

  (2.5) 

and  
 
In the absence of volume forces, the 
equilibrium equation is obtained by: 
  (2.6) 
What is reduced according to (2.4) to the 
system: 
 

    

  (2.7 b) 

By choosing as a condition to the limits on 
the inside  [5] and outside  [7] radius 
of the tube: 
    
  (2.8 b) 
with a constant, the system (2.7) admits 
two unique solutions in and . 
Considering equation (2.7 b), we find that 
it can still be written in the form: 
 

  (2.9) 

With  and 

from the expression of  in (2.3), 
equation (2.9) becomes: 

  (2.10) 

By applying the string rule to (2.7 a); 

 and 

considering the expressions of 
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and

, starting from 

(2.4) and taking into account (2.5), 
equation (2.7 a) can still be written: 
 
 

  (2.11) 

 
3. Necessary shearing antiplanar 
condition 
Assuming we have  the 
transformation then becomes 
incompressible and equations (2.10) and 
(2.11) become: 
 

  (3.1 a) 

   (3.1 b) 

On the other hand, we will have
, which give

 

 
 

  (3.2) 

whith  

With (3.2), equation (3.1 b) becomes: 
 
 

 (3.3) 

Moreover, with the condition (3.1 a) 
gives where  an 
integration constant. Thus, considering the 
condition (2.8 b), the equality (3.1 a) 
becomes: 

  (3.4) 

Thus the necessary conditions [8] for an 
antiplane shear to be possible, are reduced 
to equalities (3.3) and (3.4). It appears that 
these conditions strongly relate to the 
energy function  
 
4. Case of certain materials 
4.1 Diouf-Zidi's model 
Consider the energy function [9]: 
 
       

  (4.1) 
where  is a positive real. 
In order for the shear to take place, the 
material of type (4.1) must satisfy (3.3) and 
(3.4). 
Equation (3.4) gives: 
 

    

So where the constant is given by the 
condition (2.8 a). 
By taking (4.2) in (3.3), we obtain a 
necessary condition translated by the 
equation: 
 

  (4.3) 
When , (respectively ), (4.1) 
becomes an Ogden’s model (respectively 
of Hadamard’s model), [9] and (4.3) gives 
a condition on the antiplanar shear for such 
materials. 
 
4.2 Blatz-Ko 's model 
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Consider the energy function [10]: 
 
 

  (4.4) 

the solution of equation (3.4) has the same 
form as (4.2), it is given by: 
 

   (4.5) 

It should be noted here that the limiting 
cases  and whose models have 
been discussed [11] are excluded in this 
study because of the regularity of the  
function. 
On the Blatk-Ko’s model, the condition 
(3.3) gives us: 
 

   (4.6) 

Solving this equation we obtain: 
 

  (4.7) 

so that the conditions (3.3) and (3.4) are 
verified for Blatz-Ko’material, it is 
necessary that the (4.5) and (4.7) are equal. 
This is only possible when  is a 

constant, which is  

 
4.2 Knowles-Sternberg 's model 
As a material model, consider the 
Knowles-Sternberg’s energy density [12]: 
 

  (4.8) 

and according to the power , the local 
equations of motion are of elliptic nature

parabolic  or elliptic-
hyperbolic  
The shape of the model (4.8) makes it 
possible to have a simplified formulation 
of (3.3) namely:  

Calculating , we note that this is only 
possible if  or However, for the 
second condition (3.4) necessary for an 
antiplan movement, we have: 
 

  (4.9) 

When the variation of  is the 
same as (4.2) or (4.5). On the other hand, 
because of the variation of  the 
case causes only one possibility for 
(4.9): the same of Blatz-
Ko’smodel. 
In general, assuming  linear 
with respect to  and  [8], we have: 
 
 

  (4.10) 
For shearing with this material, its energy 
potential must satisfy conditions (3.3) and 
(3.4). 

Asking  ,with (3.3) 

and (3.4) we obtain: 

  (4.11) 

By combining these two equations, we 
arrive at a single condition for the antiplan 
transformation to take place: 
 
 

  (4.12) 
As in the previous cases, we notice that the 
deformations translated explicitly by  
are logarithmic functions. On the other 
hand, it should be noted that the condition 
for a material to undergo an anti-planar 
shear depends strongly on its potential. 
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